## Graphing

## Method

In the mathematical field of numerical analysis, spline interpolation is a form of interpolation where the interpolant is a special type of piecewise polynomial called a spline. Spline interpolation is preferred over polynomial interpolation because the interpolation error can be made small even when using low degree polynomials for the spline. Spline interpolation avoids the problem of Runge's phenomenon which occurs when interpolating between equidistant points with high degree polynomials.

See

Cubic Spline Interpolation and

Polynomial Interpolation

## Help

**Version: 1.4**

Explanation: Select Cubic Spline or Polynomial interpolation or both. Enter points that need to be approximated with a polynomial. e.g. -2,1;-1.5,2;-1,2;-0.5,1.5;

0,1;0.5,1.5;1,2;1.5,3;2,5 and hit the Solve Interpolation button.

The degree of the approximated polynomial can be set between 1..9.

Floating point in standard notation with e or E as exponent is OK. fx. 120 1.20e2 12E+1 1200E-1 all represent the same number 120.

Verbose print out details about the each iteration steps, if checked.

The Test button setup default points to approximate (for testing only)

**Email: hve@hvks.com if you have any questions.**

This version has been tested with both IE, Chrome, Safari and FireFox browser.