
Polynomial JavaScript Package 5/2/2020

Page 1 of 23

Polynomial
Support for Polynomial objects in JavaScript. When used with the Complex JavaScript
Library the Complex JavaScript library needs to be loaded first.

Constructor

new Polynomial(coefficients…) // Invoked as a Constructor
Polynomial(coefficients…) // Invoked as a Conversion

Arguments

coefficients Optional Polynomial Coefficients. Coefficients can be either JavaScript

number, JavaScript Complex Object number, an array of numbers or
another Polynomial objects.

Returns

Returns a normalized Polynomial object with an Array holding the coefficients. The
coefficients in the Array can be normal JavaScript numbers or complex JavaScript
numbers.
If Polynomial is invoked as a conversion the coefficients parameter is converted to a
Polynomial object and returned.

If coefficients is undefined, an empty Polynomial object is returned.
Regardless if invoked as a new constructor or as a Conversion Polynomial constructor
always return a Polynomial normalized object.

Example:
x=new Polynomial(1,2,3); // Return a new Polynomial object representing the Polynomial 1x2+2x+3
x=new Polynomial(Complex(1+1),2,Complex(3-4));

// Return a Polynomial object representing the polynomial (1+i2)x2+2x+(3-4i).
x=[1,2,3];
y=new Polynomial(x); // Return a new Polynomial object representing the Polynomial 1x2+2x+3

y=new Polynomial(x,25); // Return a new Polynomial object representing the Polynomial 1x3+2x3+3x+25
y=new Polynomial(Complex(3-3),y);

// Returns a new Polynomial object representing the Polynomial (3-
3i)x4+1x3+2x3+3x+25

x=new Polynomial(1,,3); // Return a new Polynomial object representing the Polynomial 1x2+3

Normalized Polynomial

The Polynomial is normalized by eliminating leading zero coefficients and converting
undefined coefficients to 0.

Notice that all properties or methods can work on both regular real coefficients or
complex number coefficients or a mix of real and complex number coefficients. E.g.

Properties

Polynomial JavaScript Package 5/2/2020

Page 2 of 23

Properties Description
array() Return a Polynomial object as an array, where each array

element is the coefficients of the polynomial in
descending order of power

degree() Returns the degree of the Polynomial
getcoeff(xth) Return the coefficients belonging to xth power of the

Polynomial
isComplex() Return true if at least one coefficient in the Polynomial is

a complex number
isReal() Return true if all the coefficients in the Polynomial are

only JavaScript numbers.
join(seperator) Concatenate polynomial coefficients to form a string that

is returned. If a separator is specified, each element is
separated by the separator

monic() Bring the polynomial into a monic form in which the
leading coefficients is 1 by dividing the leading
coefficient with all the other coefficients

normalize() The Polynomial is normalized by eliminating trailing
zero coefficients and converting undefined coefficients to
0. The normalized polynomial is returned

scale() Scale the polynomial by multiplying all the coefficients
with a factor. The factor can be automatic calculated.

setcoeff(xth,newcoeff) Set the coefficient belonging to the xth power of the
polynomial to the newcoeff value

shift(no) Do a Polynomial Taylor shift of no
simplify() The Polynomial is simplified by reducing complex

numbers with an imaginary part of zero to a real number
toExponential(digits) Return a string representation of the Polynomial using

exponential notation for the coefficients and with the
specified number of digits. Notice the digits is optional

toFixed(digits) Return a string representation of the Polynomial where
the coefficients contains a specified number of digits
after the decimal place. Notice the digits is optional

toPrecision(digits) Return a string representation of the Polynomial where
the coefficients contains either exponential or fixed point
notation depending on the size of the number and the
number of significant digits specified.
Notice the digits is optional

toString() Return a string representation of the Polynomial object
valueof() The primitive value number of this Polynomial object.

Methods

Methods Descriptions
add(a,b) Add two Polynomial object together

Polynomial JavaScript Package 5/2/2020

Page 3 of 23

compositedeflate(z) Deflate a Polynomial with the root z using composite
deflation

deflate(z) Deflate a Polynomial with the root z
derivative() Return the derivative polynomial
div(a,b) Return the division of two polynomial
mul(a,b) Return the multiplication of two polynomial
pow(p,n) Return the power of raising the Polynomial to n
rem(a,b) Return the remainder polynomial after dividing the

polynomial a/b
sub(a,b) Returned the subtracted polynomial a-b
value(z) Returned the value of the Polynomial at point z
zeros() Find all zeros of a Polynomial

Constants

zero return a new Polynomial() object
one return a new Polynomial(1) object

Miscellaneous

parsePolynomialt() Parse a Polynomial string and return a Polynomial object

Polynomial JavaScript Package 5/2/2020

Page 4 of 23

Polynomial.array()
Return the Polynomial object coefficients as an Array of coefficients

Synopsis

Polynomial object.array()

Returns

The coefficients of the Polynomial object is returned in the return array

Example

var p = new Polynomial(1,2,3); // x2+2x+3
var coeff;

var coeff=p.array() // coeff=[1,2,3]

See Also

Polynomial.join()

Polynomial.add()
Add two Polynomials

Synopsis

Polynomial.add(a,b)

Arguments

a,b The Polynomials to be added.

Returns

The result of the Polynomial addition a+b.

Example

var x=new Polynomial(1,2,3); // x2+2x+3
var y=new Polynomial(5,6); // 5x+6
var z=new Polynomial(Complex(1+i),Complex(2-2i),3); // (1+i)x2+(2-2i)x+3

Polynomial JavaScript Package 5/2/2020

Page 5 of 23

var p=Polynomial.add(x,y) // result x2+7x+9
var p2=Polyomial.add(z,x) // result (1+i)x2+(4-2i)x+6

See Also

Polynomial.div(), Polynomial.mul(), Polynomial.sub(), Polynomial.rem()

Polynomial.compositedeflate()
Deflate a root of the Polynomial using composite deflation

Synopsis

Polynomial object.compositedeflate(z)

Arguments

z The root by which the Polynomial is composite deflated.

Returns

No returns

Result

 The Polynomial Object has been deflated with the root z. Notice the deflation is done
using composite deflation meaning dividing the root z into Polynomial using both a
forward and backward deflation and then determine for which power xy to begin using
the backward deflated coefficients to minimize the division error and using forward
deflated coefficients for power higher than xy. For the coefficients at xy the coefficient is
calculated as the average between the forward and backward deflated coefficient for xy..

Example

var p = new Polynomial(1,-6,11,-6); // 1x3-6x2+11x-6
var x = 2; // one root is 2

p.compositedeflate(x); // result x2-4x+3

See Also

Polynomial.deflate()

Polynomial.degree()

Polynomial JavaScript Package 5/2/2020

Page 6 of 23

Return the degree of the Polynomial object

Synopsis

Polynomial object.degree()

Returns

The degree of the Polynomial object.

Example

var p = new Polynomial(1,-6,11,-6); // 1x3-6x2+11x-6
var n;

n=p. degree(); // n = 3

See Also

Polynomial.getcoeff(), Polynomial.setcoeff()

Polynomial.deflate()
Deflate a root of the Polynomial using forward deflation

Synopsis

Polynomial object.deflate(z)

Arguments

z The root by which the Polynomial is forward deflated.

Returns

No returns

Result

 The Polynomial Object has been deflated with the root z. Notice the deflation is done
using forward deflation meaning dividing the root z into Polynomial starting with the
coefficients with the highest power. E.g. xn. If the roots are deflated, using increasing
magnitude of the root the forward deflation method is numerical stable. If in doubt a root

Polynomial JavaScript Package 5/2/2020

Page 7 of 23

cant been guarantee to be deflated in increasing order of magnitude then use the
composite deflation method.

Example

var p = new Polynomial(1,-6,11,-6); // 1x3-6x2+11x-6
var x = 2; // one root is 2

p. deflate(z); // result x2-4x+3

See Also

Polynomial.compositedeflate()

Polynomial.derivative()
Calculate the derivative coefficients of the Polynomial object

Synopsis

Polynomial object.derivative()

Arguments

none

Returns

Return a new Polynomial, which is the derivative of the Polynomial object.

Example

var p = new Polynomial(1,-6,11,-6); // 1x3-6x2+11x-6
var dp=p. derivative(); // dp is 3x2-12x+11 same as Polynomial(3,-12,11);

See Also

Polynomial.div()
Divide two Polynomial numbers

Synopsis

Polynomial.div(a,b)

Polynomial JavaScript Package 5/2/2020

Page 8 of 23

Arguments

a,b The Polynomials to be divided.

Returns

The result of the Polynomial division a/b.

Example

var x = new Polynomial(1,-6,11,-6); // 1x3-6x2+11x-6
var y = new Polynomial(1,-2); // x-2

Polynomial.div(x,y) // result x2-4x+3

See Also

Polynomial.add(), Polynomial.mul(), Polynomial.sub(), Polynomial.rem()

Polynomial.getcoeff()
Get one Polynomial coefficients

Synopsis

Polynomial object.getcoeff(xth)

Arguments

xth The coefficient to the xth degree.

Returns

Return the coefficient associated with the xth degree of the Polynomial object.

Example

var p = new Polynomial(1,-6,11,-6); // 1x3-6x2+11x-6
var coeff;

coeff=p. getcoeff(2); // coeff=-6

See Also

Polynomial JavaScript Package 5/2/2020

Page 9 of 23

Polynomial.setcoeff()(), Polynomial.degree()

Polynomial.isComplex()
Determine if the Polynomial object contains any complex numbers

Synopsis

Polynomial object.isComplex()

Returns

Return true if the Polynomial object contains any coefficients that is a complex number
otherwise false.

Example

var p = new Polynomial(1,2,3); // x2+2x+3
var complexnumber;

var complexnumber=p.isComplex() // return false;

See Also

Polynomial.isReal()

Polynomial.isReal()
Determine if the Polynomial object contains all real numbers

Synopsis

Polynomial object.isReal()

Returns

Return true if the Polynomial object coefficients contains all real number otherwise false.

Example

var p = new Polynomial(1,2,3); // x2+2x+3
var onlyreal;

var onlyreal=p.isReal() // return true;

Polynomial JavaScript Package 5/2/2020

Page 10 of 23

See Also

Polynomial.isComplex()

Polynomial.join ()
Return the Polynomial object coefficients as a join String

Synopsis

Polynomial object.join(separator)

Arguments

separator Separator character. If omitted the default separator is “,”

Returns

The coefficients of the Polynomial object is returned as a joined string using the separator
between coefficients.

Example

var p = new Polynomial(1,2,3); // x2+2x+3
var str;

var str=p.join() // str=”1,2,3”

See Also

Polynomial.array()

Polynomial.monic()
Bring the Polynomial object into a monic form

Synopsis

Polynomial object.monic()

Returns

Polynomial JavaScript Package 5/2/2020

Page 11 of 23

A monic Polynomial object where the leading coefficient to anxn is scaled to 1. Taking an
and divide it up in the other coefficients an-1,…a1,a0. The same effect can also be archived
by using the property Polynomial.scale(1/an).

Example

var p = new Polynomial(2,3,4); // 2x2+3x+4

p.monic () // p is now x2+1.5x+2

See Also
Polynominal.scale()

Polynomial.mul()
Multiply two Polynomials

Synopsis

Polynomial.mul(a,b)

Arguments

a,b The Polynomials to be multiplied.

Returns

The result of the Polynomial multiplication a*b.

Example

var x = new Polynomial(1,-1); // x-1
var y = new Polynomial(1,-4,3); // x2-4x+3

z=Polynomial.mul(x,y) // x3-6x2+11x-6

See Also

Polynomial.add(), Polynomial.div(), Polynomial.sub(), Polynomial.rem()

Polynomial.normalize ()
Normalize the Polynomial object

Synopsis

Polynomial JavaScript Package 5/2/2020

Page 12 of 23

Polynomial object.normalize()

Returns

A normalized Polynomial object. This mean removing leading or trailing zeros. Any
undefined coefficients is converted to 0.

Example

var p = new Polynomial(0, , 1,2,3); // 0x4+?x3+x2+2x+3

p.normalize() // p is now x2+2x+3

See Also

Polynomial.one
Return the constant one as a Polynomial object

Synopsis

Polynomial.one

Returns

The Polynomial constant one object. Same as New Polynomial(1).

Example

var x = Polynomial.one; // x=1 x is a Polynomial object

See Also

Polynomial.zero

Polynomial.parsePolynomial()
Parse and convert a Polynomial string into a Polynomial object

Synopsis

parsePolynomial(string)

Arguments

Polynomial JavaScript Package 5/2/2020

Page 13 of 23

string String to be parsed into a Polynomial object

Returns

parsePolynomial() parses and return a new Polynomial object contained in s.
parsePolynomial() return an empty Polynomial object if parsing fails. A Polynomial
object followed the standard syntax:

anxn+an-1xn-1+…a2x2+a1x+a0
where the coefficients an,an-1,…,a2,a1,a0 can be either a regular integer, floating point
number as in JavaScript or a complex JavaScript number following the complex syntax
as outline in the Complex number JavaScript library packages. Notice the format for xn
need to be expressed in a string as x^n.
Furthermore you can use Polynomial arithmetic (*,+,-,/), grouping with () and power
with the ^ operator, see example below. The returned Polynomial object is guarantee to
not have any undefined coefficients. E.g x^5-1 is the same as new Polynomial(1,0,0,0,0,-
1);
.

Example

var p = parsePolynomial(“x^2+3x+6”); // Same as Polynomial(1,3,6) or x2+3x+6
p = parsePolynomial(“-2x^2+3x-5”); // Same as Polynomial(-2,3,-5);
p = parsePolynomial(“(1x^2+2x+3)^2”); // Same as Polynomial(1,4,10,12,9);
p=parsePolynomial(“(x-1)(x-2)(x-3)”); // Same as Polynomial(1,-6,11,-6);

Notice

The string can also contains Polynomial expression with the operator +,-,*,/,%,^ and
arithmetic grouping with (). E.g.
“(x-1)(x-2)*(x^3-1)^5” or “(x-1)^15” are all valid strings that can be converted by
parsePolynomial() into a Polynomial object. Complex number can also be handle e.g.
“(3-i4)x^3+(-2)x^2+(-i4)x-(3)” notice you would need to group them using () as
coefficient to xn
Also notice you do not need the * operator in from of a () as it also interpret implicit
multiplication correctly.

See Also

new Polynomial(), Polynomial()

Polynomial.pow()
Compute py where p is a Polynomial

Synopsis

Polynomial JavaScript Package 5/2/2020

Page 14 of 23

Polynomial.pow(p,n)

Arguments

p A Polynomial object to be raised to a power
n The power that p is raised to. n need to be a positive integer

Returns

x to the power of y or xy

Example

var p = new Polynomial(1,2,3); // x3+2x+3
var n = 2;

Polynomial.pow(p,2); // x4+4x3+10x2+12x+9

See Also

Polynomial.mul()

Polynomial.rem()
Divide two Polynomial numbers and return the remainder Polynomial

Synopsis

Polynomial.rem(a,b)

Arguments

a,b The Polynomials to be divided.

Returns

The remainder Polynomial as a result of the division a/b.

Example

var x = new Polynomial(1,-6,11,-6); // 1x3-6x2+11x-6
var y = new Polynomial(1,-2); // x-2

Polynomial JavaScript Package 5/2/2020

Page 15 of 23

var z=Polynomial.rem(x,y) // result 0 because x is dividable by y with a zero
remainder

See Also

Polynomial.add(), Polynomial.mul(), Polynomial.sub(), Polynomial.div()

Polynomial.scale ()
Scale the Polynomial object

Synopsis

Polynomial object.scale(scale)

Arguments

scale Optional parameter with the scale factor. If omitted an auto scaling is

performed.

Returns

A scaled Polynomial object where the all coefficients of the Polynomial are multiplied by
scale parameter. If scale parameter is omitted it is auto scaled based on very large or very
small coefficients. Computes a scale factor to multiply the coefficients of the polynomial.
The scaling is done to avoid overflow and to avoid undetected underflow interfering with
the convergence criterion.
If auto scaled, the scale factor is a power of the base (2) to avoid loss of precision.

Example

var p = new Polynomial(2,3,4); // 2x2+3x+4

p.scale (0.5) // p is now x2+1.5x+2

See Also

Polynomial.setcoeff()
Set one Polynomial coefficient

Synopsis

Polynomial object.setcoeff(xt,newcoeffh)

Polynomial JavaScript Package 5/2/2020

Page 16 of 23

Arguments

xth The coefficient to the xth degree.
newcoeff The replacement value for the xth coefficient

Returns

Return the new coefficient associated with the xth degree of the Polynomial object.

Example

var p = new Polynomial(1,-6,11,-6); // 1x3-6x2+11x-6
var coeff;

coeff=p. setcoeff(2,8); // coeff=8 and Polynomial is 1x3+8x2+11x-6

See Also

Polynomial.getcoeff()(), Polynomial.degree()

Polynomial.shift()
Do a Polynomial Taylor shift of the Polynomial resulting in new coefficients

Synopsis

Polynomial object.shift(n)

Returns

Do a Polynomial Taylor shift of offset n. The new Polynomial has the same roots as the
original Polynomial shift n to the left. E.g. if a root was 2 prior to shift then Polynomial
object.shift(1) result in the new polynomial has a root of 1. The original Polynomial root
can be recreated by adding the shift n, to all the root and these roots are the roots of the
original Polynomial.

Example

var p = new Polynomial(1,0,0,0,-1); // 1x5-1

p. shift(1); // Polynomial is now 1x5+5x4+10x3+10x2+5x

See Also

Polynomial JavaScript Package 5/2/2020

Page 17 of 23

Polynomial.scale()

Polynomial.simplify()
Simplify the Polynomial coefficients

Synopsis

Polynomial object.simplify()

Returns

Simplify Polynomial where all complex number coefficients with an imaginary part of 0
has been converted into a real number.

Example

var p = new Polynomial(1,New Complex(-6,0),11,-6); // 1x3(-6+i0)x2+11x-6

p. simplify(); // Polynomial is now 1x3-6x2+11x-6

See Also

Polynomial.getcoeff()(), Polynomial.degree()

Polynomial.sub()
Subtract two Polynomials

Synopsis

Polynomial.sub(a,b)

Arguments

a,b The Polynomials to be subtracted.

Returns

The result of the Polynomial subtraction.

Polynomial JavaScript Package 5/2/2020

Page 18 of 23

Example

var p1=new Polynomial(1,2,3); //x2+2x+3
var p2=new Polynomial (4,5); //4x+5
var p3=new Polynomial(Complex(1+i),Complex(2-2i),3); // (1+i)x2+(2-2i)x+3

Polynomial.sub(p1,p2); // x2-2x-2
Polynomial.sub(p3,p1); // (0+i)x2+(0-2i)x+0

See Also

Polynomial.add(), Polynomial.div(), Polynomial.mul(), Polynomial.rem()

Polynomial.toExponential()
Format a Polynomial using exponential notation for the coefficients

Synopsis

Polynomial.toExponential(digits)

Arguments

Digits The number of digits that will appear after the decimal point. This may be

a value between 0 and up. If this argument is omitted, as many digits as
necessary will be used.

Returns

A string representations of the Polynomial, where all coefficients are in exponential
notation, with one digit before the decimal place and digits digits after the decimal place.
The fractional part of the Polynomial coefficients number is rounded, or padded with
zeros, as necessary, so that is has the specified length.

Example

var p=new Polynomal(10.5567,1.66,-200) //10.5567x2+1.66x-200
p.toExponential(1); // 1.1e+2x2+1.7e+0-2e+2
p.toExponential(3); // 1.056e+1x2+1.66x-2e+2
p.toExponential(); // 1.05567e+1x2+1.66x-2e+2

See Also

Polynomial.toFixed(), Polynomial.toPrecision(), Polynomial.toString()

Polynomial JavaScript Package 5/2/2020

Page 19 of 23

Polynomial.toFixed()
Format a Polynomial using fixed-point notation for the coefficients

Synopsis

Pylonomial.toFixed(digits)

Arguments

Digits The number of digits that will appear after the decimal point for the

Polynomial coefficients. This may be a value between 0 and 20, inclusive.
If this argument is omitted, it is treated as zero.

Returns

A string representations of the Polynomial, that does not used exponential notation and
has exactly digits digits after the decimal point. The Polynomial coefficients is rounded as
necessary, and the fraction part is padded with zeros if necessary so that it has the
specified length. If the Polynomial coefficients is greater than 1e+21, this method simple
calls Polynomial.toString() and return a string in exponential notation.

Example

var p=new Polynomal(10.5567,1.66,-200) //10.5567x2+1.66x-200
p.toFixed(1); // 10.1x2+1.7-200
p.toFixed(3); // 10.557x2+1.66x-200
p.toFixed(); // 11x2+2x-200

See Also

Pylonomial.toExponential(), Polynomial.toPrecision(), Pylonomial.toString()

Polynomial.toPrecision()
Format the significant digits of a Polynomial coefficients

Synopsis

Polynomial.toPrecision(digits)

Arguments

Polynomial JavaScript Package 5/2/2020

Page 20 of 23

Digits The number of significant digits to appear as the coefficients in the
returned string. This may be a value between 1 and 21, inclusive. If this
argument is omitted , the toString() method is used instead.

Returns

A string representations of the Polynomial, that contains precisions significant digits in
the cofficients. If precision is large enough to include all the digits of the integer part of
number, the returned string uses fixed-point notation. Otherwise, exponential notation is
used with one digit before the decimal place and precision – 1 digits after the decimal
place. The number is rounded or padded with zeros as necessary.

Example

var p=new Polynomal(10.5567,1.66,-200) //10.5567x2+1.66x-200
p.toFixed(1); // 1.1e+1x2+1.7-2e+2
p.toFixed(3); // 1.557e+1x2+1.66x-200

See Also

Polynomial.toExponential(), Polynomial.toFixed(), Polynomial.toString()

Polynomial.toString()
Format the significant digits of a Polynomial coefficients

Synopsis

Polynomial.toString(radix)

Arguments

Radix If omitted the base 10 will be used to convert the Polynomial coefficients

to a string. Otherwise the radix will be used (2..36).

Returns

A string representations of the Polynomial, in the indicated radix, returned as a
normalized number.

Example

var p=new Polynomal(10.5567,1.66,-200) //10.5567x2+1.66x-200

p.toString(); // //10.5567x2+1.66x-200

Polynomial JavaScript Package 5/2/2020

Page 21 of 23

See Also

Polynomial.toExponential(), Polynomial.toFixed(), Polynomial.toPrecision()

Polynomial.valueof()
Return the primitive value of the coefficients as an array

Synopsis

Polynomial object.valueof()

Returns

The primitive value of the Polynomial is returned in normalized form.

Example

var p = new Polynomial(1,2,3); //x2+2x+3
p.valueOf() // return 1

See Also

Polynomial.value()
Return the value of the Polynomial at point x.

Synopsis

Polynomial object.value(z)

Arguments

z z is the point at which to calculate the value of the Polynomial object. z

can be an integer, floating point or complex number.
Returns

Return the value of the Polynomial at point z.

Example

Polynomial JavaScript Package 5/2/2020

Page 22 of 23

var p = new Polynomial(1,-5,6); //x2-5x+6
p.value(1) // return 2

See Also

Polynomial.zero
Return an Empty Polynomial object

Synopsis

Polynomial.zero

Returns

The Polynomial object where the coefficients is undefined

Example

var p = Polynomial.zero;

See Also

Polynomial.one

Polynomial.zeros()
Find all the roots of the Polynomial.

Synopsis

Polynomial object.zeros(method,verbose,composite)

Arguments (Notice all arguments is optional)

method Select the method to use for finding the zeros. Currently the following

methods are supported:
 “Newton”, “Ostrowski”, “Halley”, Householder”.
 If method is undefined it will default to Newton’s method.
verbose If verbose is true verbose information of how the root finding progress is

generated and return as Array[0] in the return Array. If verbose is
undefined it defaults to false;

composite If composite is true the deflation is done using the composite deflation
method. Since we find the root in increasing magnitude the default

Polynomial JavaScript Package 5/2/2020

Page 23 of 23

forward deflation method is just as an accurate as using the composite
deflation method. If composite is undefined it defaults to false;

Returns

Return all the zeros of the Polynomial object as an Array. For a polynomial with degree n
the roots in the Array is from 1..n for a total of n roots. Array [0] contains the verbose
information generated as a textual string.

Example

var p = new Polynomial(1,-5,6); //x2-5x+6
var x=p.zeros(”Newton”,false,false); // return

// x[2]=1.9999999999999997,
// x[1]=3.00000000000000042
// x[0]=””; verbose is false;

See Also

